
openRole: Can we bring ‘Design once, run everywhere’ to
FPGAs?
—
Burkhard Ringlein & cloudFPGA Team Zurich
IBM Research Europe

FPL Workshop on DevOps support for Cloud FPGA platforms, 2020-09-04

B. Ringlein / cloudFPGA Team / cFDevOps Workshop May 2020 / © 2020 IBM Corporation 2

FPGAs are spreading in DCs
and Clouds...

● ...that’s why we are here
● Further Examples:

– AWS FPGA instances
– Microsoft’s Project Brainwave
– OC-Accel/Snap
– PC2, Galapagos, cloudFPGA, etc…

● Consequences:
– Cloud and Datacenter are typically multi-user

environments
→ Constrains the architecture

– Usually, not all app developers want to deal
with the I/O details of specific boards
→ Vendors provide platforms

[10]

[3]

[11]

[12]

[13]

[17]

3B. Ringlein / cloudFPGA Team / cFDevOps Workshop May 2020 / © 2020 IBM Corporation

Providing a platform: The
Shell Role Architecture (SRA)

● Split the FPGA design into:
- a platform specific part: SHELL
- an application specific part: ROLE

● The SRA design pattern offers:
- I/O abstractions
- different privilege levels
- improves platform security

(especially in combination with partial
reconfiguration)

● Consequently: SRAs are used frequently
(by all major Cloud vendors)

● SRAs are “the APIs of FPGA app developers”

4B. Ringlein / cloudFPGA Team / cFDevOps Workshop May 2020 / © 2020 IBM Corporation

Some examples of SRAs

AWS [1]

OC-Accel (OpenCAPI) [2]

cloudFPGA [14]

5B. Ringlein / cloudFPGA Team / cFDevOps Workshop May 2020 / © 2020 IBM Corporation

Some more examples of
SRAs

Galapagos FPGA
Hypervisor [5]

Alveo cards [7]

Project Brainwave [8]

Baidu FPGA Cloud server [15] Hardware Sandboxes
(Florida) [16]

...and counting...

/dev/xillybus_<name>

Xillybus (kind of) [9]

B. Ringlein / cloudFPGA Team / cFDevOps Workshop May 2020 / © 2020 IBM Corporation 6

The Problem:
Every vendor
provides a
different
interface

[6]

AWS F1 SDK

Intel’s oneAPI

Microsoft
Sandpiper (?)

OC-Accel
Xilinx Vitis
environment

 FPGA app
developer

9B. Ringlein / cloudFPGA Team / cFDevOps Workshop May 2020 / © 2020 IBM Corporation

Actually, why is this a problem?

● FPGA application development is tightly coupled to interfaces (i.e. “I/O”)

● to achieve low latency / high throughput:
run time behavior and interfaces must be considered at design time (stalls, request latency, bursts…)

→ FPGA applications are barely interface agnostic

→ application depends on Shell interfaces (“APIs”)

→ limited re-usability & portability

FPGA app development:

code kernel in
HLS/HDL

find app suitable for
FPGA acceleration
(AI, Genetics, ….)

debug
& simulate

kernel

integrate app
in platform

env. (”Role”)

debug
& simulate

Role

deploy to
(Cloud) FPGA Run Monitor &

Debug

Role environment examples:
● Xilinx SDAccel
● Intel FPGA SDK
● AWS Shell
● cloudFPGA Shell

● Galapagos
● OC-Accel
● Xilinx Vitis
● … you name it...

reusable not (easily) reusable

10B. Ringlein / cloudFPGA Team / cFDevOps Workshop May 2020 / © 2020 IBM Corporation

What would be a better solution?
● limited (or no) portability of FPGA designs is

another “roadblocker” in the way of FPGAs

● (good) reasons for change of platforms:

– elasticity, scaling

– evolution of platforms

– Cloud vendor change, business decisions, etc.
● re-usable Roles would greatly accelerate the

adaption of new platforms
→ and consequently, the growth of the ecosystem

with portable / reusable Roles:

code app in
HLS/HDL

find app suitable for
FPGA acceleration
(AI, Genetics, ….)

debug
& simulate

app

integrate app
in platform

env. (”Role”)

debug
& simulate

Role

deploy to
(Cloud) FPGA Run Monitor &

Debug

reusable (“with one click”) not (easily) reusable

B. Ringlein / cloudFPGA Team / cFDevOps Workshop May 2020 / © 2020 IBM Corporation 11

Once upon a time…
● late 1970s: many disparate versions of OSs
● POSIX: Portable Operating System Interface
● Originated 1988 to maintain compatibility

between OSs
● A POSIX compliant application can be compiled

and deployed on every POSIX compliant OS,
without code changes

● Latest update: IEEE Std 1003.1-2017
● Linux, macOS & Android are POSIX-compliant

(but extend the API with custom calls)
→ a (well-designed) SW application can be
ported effortless between these platforms

● (Windows Kernel offers a POSIX compatibility layer)
POSIX = code once, run everywhere,
 if you have a compiler

[4]

12B. Ringlein / cloudFPGA Team / cFDevOps Workshop May 2020 / © 2020 IBM Corporation

What does POSIX bring?
● POSIX defines APIs and data structures for

OS system calls (among other things)
● Any program that:

– applies the POSIX API of the structs

– uses a programming language that offers a
POSIX compliant compiler (for the target
platform)

– → can be compiled and executed on any
POSIX compliant Operating System
without further code changes

● POSIX also specifies the commands and flags
to invoke the compiler (e.g. cc or c99 etc.)

● POSIX does not provide an implementation for
the compilers or the system calls

SENDTO(3P)
 POSIX Programmer's Manual

NAME
 sendto - send a message on a socket

SYNOPSIS
 #include <sys/socket.h>

 ssize_t sendto(int socket, const void *message, size_t length,
 int flags, const struct sockaddr *dest_addr,
 socklen_t dest_len);

DESCRIPTION
 The sendto() function shall send a message through a
connection-mode or connectionless-mode socket. If the socket is
connectionless-mode, the message shall be sent to the address
specified by dest_addr. If the socket is connection-mode, dest_addr
shall be ignored.

RETURN VALUE
 Upon successful completion, sendto() shall return the number
of bytes sent. Otherwise, -1 shall be returned and errno set to
indicate the error.

ERRORS
 The sendto() function shall fail if:

$ man 3p sendto

B. Ringlein / cloudFPGA Team / cFDevOps Workshop May 2020 / © 2020 IBM Corporation 13

Can we do this
for FPGAs too?
Can we bring “design once, run everywhere” to FPGAs?
→ the openRole proposal

14B. Ringlein / cloudFPGA Team / cFDevOps Workshop May 2020 / © 2020 IBM Corporation

SRAs have already common
concepts

● usually FPGA applications exist not alone: See as
part of a (complex) application communication
schema

● Besides configuration & control registers, there
are usually (one of) two communication channels:
- address based: PCIe, via Memory (AXI4 Full)
- stream based: network or PCIe abstraction

(AXI4 Stream)
● Stream- and address-based communication can

abstract every fabric (PCIe, CXL, Ethernet,
Infiniband, etc.)

● Define an interface for this level of abstraction
that is valid for all kind of platforms

B. Ringlein / cloudFPGA Team / cFDevOps Workshop May 2020 / © 2020 IBM Corporation 16

Design flow with openRole

● allow the compilation/synthesis of any Role
for any compliant Platform
– it is not limiting any platform or application

implementation
– it is not limiting any platform specific

optimization
● → enables portable FPGA designs

– SRAs have already common concepts
– design flows are actually automated and

similar across platforms and vendors
– → we have to agree on a common interface

● it is about portable FPGA designs, not porting
Software to FPGAs

synthesis
with Shell

(platform dependent)

place & route
(device specific)

netlist optimization
(platform dependent)

deploy & run
(device specific)

HDL / (MLS) / HLS
App

development
(platform agnostic)

do
ne

 b
y

us
er

pr
ov

id
ed

 b
y

pl
at

fo
rm

 v
en

do
r

(f
ul

ly
 a

ut
om

at
ed

, i
de

al
ly

)

proposed openRole flow

static Shell
(“secret magic” of
platform vendor)

openRole API

no manual adaption
necessary

compiler frontend
(e.g. gcc/llvm)

equivalent POSIX flow

app coding
(e.g. in C/C++)

compiler backend
(device and

platform specific)

Intermediate
Representation

deploy & run
binary PO

SI
X

co
m

pl
ia

nt
 p

la
tf

or
m

POSIX system calls

“static” OS
(open source

 or not)

no manual
adaption
necessary

17B. Ringlein / cloudFPGA Team / cFDevOps Workshop May 2020 / © 2020 IBM Corporation

openRole: ideas for a
standard – FPGA side

● solely based on AMBA AXI4
● one defined interface (“API”)
● bus-width adaption done with AXI

Interconnects (“Template parameter”)
● Interface includes:

– stream based and address based
communication

– control registers (and virtual interrupts)
● The use of a standard AXI-based interface

allows the straightforward integration of:
– debug probes
– performance profilers

entity is oR_Role is
 port (
 piClk : in std_ulogic;
 piRst : in std_ulogic;
 ---- Configuration & Ctrl Registers AXI4-Lite ----------
 biOR_control_AXI_AWVALID : in std_ulogic;
 biOR_control_AXI_AWREADY : out std_ulogic;
 biOR_control_AXI_AWADDR : in std_ulogic_vector (15 downto 0);
.....
 ---- Input AXI-Write Stream Interface ----------
 siNetwork_Data_tdata : in std_ulogic_vector(63 downto 0);
 siNetwork_Data_tkeep : in std_ulogic_vector(7 downto 0);
 siNetwork_Data_tvalid : in std_ulogic;
.....
);
end oR_Role;

B. Ringlein / cloudFPGA Team / cFDevOps Workshop May 2020 / © 2020 IBM Corporation 18

openRole: ideas for a
standard – CPU side

oR_return oR_configure(oR_role_id role_id, const
oR_word *config_to_write);

oR_return oR_write(oR_role_id role_id, const oR_word
*data, oR_address start_address, oR_len length);

oR_return oR_read(oR_role_id role_id, oR_word *data,
oR_address start_address, oR_len length);

oR_return oR_send(oR_role_id role_id, const oR_word
*data, oR_len length);

oR_return oR_recv(oR_role_id role_id, oR_word *data,
oR_len length);

● every FPGA Role/app needs some control by the
platform or communication with some SW app

● The app developer is only interested in the
interface between SW app and FPGA Role, not
how the data gets there

● We need also an unified SW interface, e.g.:
– oR_configure(...)
– oR_write & oR_read (address based)
– oR_send & oR_receive (stream based)

● All Roles should be identified with an integer
role_id (not PCIe address, or IP address, etc.) to
have common meta data

B. Ringlein / cloudFPGA Team / cFDevOps Workshop May 2020 / © 2020 IBM Corporation 19

Summary:
The openRole proposal
● Enable “design once, run everywhere” for

heterogeneous CPU-FPGA platforms
● NOT an implementation, it’s a standard for

abstracting configuration and communication
from a particular HW

● NOT a programming model, it is about portable
FPGA designs

● requires a “compiler” for each platform
● but does not require changes to the code
● published as “Header Files”, “VHDL entities”

and “PDFs” by the community
● interested in shaping openRole? You would do

it completely different?
→ contact us

Thank you…
Burkhard Ringlein
 ngl@zurich.ibm.com
 zurich.ibm.com/cci/cloudFPGA/
 @0xcaffee

B. Ringlein / cloudFPGA Team / cFDevOps Workshop May 2020 / © 2020 IBM Corporation

Appendix

B. Ringlein / cloudFPGA Team / cFDevOps Workshop May 2020 / © 2020 IBM Corporation 21

openRole: ideas for a standard – system view

B. Ringlein / cloudFPGA Team / cFDevOps Workshop May 2020 / © 2020 IBM Corporation 22

openRole should not limit
languages or tools

openRole is also not a
programming model or a
transport protocol

...it just connects
arbitrary programs with
arbitrary platforms.

27B. Ringlein / cloudFPGA Team / cFDevOps Workshop May 2020 / © 2020 IBM Corporation

References

[1] https://github.com/aws/aws-fpga/blob/master/hdk/docs/AWS_Shell_Interface_Specification.md#ShellInterfaces
[2] https://opencapi.github.io/oc-accel-doc/
[3] https://www.xilinx.com/applications/data-center.html
[4] https://commons.wikimedia.org/wiki/File:Linux_kernel_API.svg
[5] https://doi.org/10.1007/978-3-319-92792-3_2
[6] https://commons.wikimedia.org/wiki/File:Dieric_Bouts_013.jpg
[7] https://developer.xilinx.com/en/articles/acceleration-basics.html
[8] US20190190847A1: Allocating acceleration component functionality for supporting services
[9] http://xillybus.com/downloads/xillybus_product_brief.pdf
[10] https://www.nextplatform.com/2020/01/13/on-the-spearpoint-of-fpga-and-the-cloud/
[11] https://www.nextplatform.com/2020/01/14/the-inevitability-of-fpgas-in-the-datacenter/
[12] http://sc19.supercomputing.org/proceedings/bof/bof_pages/bof115.html
[13] https://h2rc.cse.sc.edu
[14] https://doi.org/10.1109/FPL.2019.00054
[15] https://cloud.baidu.com/doc/FPGA/s/Ajwvyh11e
[16] https://doi.org/10.1109/HPEC.2019.8916526
[17] https://inaccel.com

All remaining images are from IBM DAM or IBM Websites or created by the author.

B. Ringlein / cloudFPGA Team / Guest lecture for PACL, June 2020 / © 2020 IBM Corporation 28

cloudFPGA: Further Reading

● B. Ringlein, F. Abel, A. Ditter, B. Weiss, C. Hagleitner and D. Fey, “ZRLMPI: A Unified Programming Model for Reconfigurable
Heterogeneous Computing Clusters” in 28th IEEE International Symposium On Field-Programmable Custom Computing
Machines (FCCM), 2020.

● B. Ringlein, F. Abel, A. Ditter, B. Weiss, C. Hagleitner and D. Fey, “ System architecture for network-attached FPGAs in the
cloud using partial reconfiguration,” in 29th International Conference on Field Programmable Logic and Applications (FPL),
2019.

● F. Abel, J. Weerasinghe, C. Hagleitner, B. Weiss, S. Paredes, “An FPGA Platform for Hyperscalers,” in IEEE 25th Annual
Symposium on High-Performance Interconnects (HOTI), Santa Clara, CA, pp. 29–32, 2017.

● Weerasinghe, F. Abel, C. Hagleitner, A. Herkersdorf, “Disaggregated FPGAs: Network performance comparison against bare-
metal servers, virtual machines and Linux containers,” in IEEE International Conference on Cloud Computing Technology and
Science (CloudCom), Luxembourg, 2016.

● J. Weerasinghe, R. Polig, F. Abel, “Network-attached FPGAs for data center applications,” in IEEE International Conference on
Field-Programmable Technology (FPT ’16), Xian, China, 2016.

● J. Weerasinghe, F. Abel, C. Hagleitner, A. Herkersdorf, “Enabling FPGAs in hyperscale data centers,” in IEEE International
Conference on Cloud and Big Data Computing (CBDCom), Beijing, China, pp. 1078–1086, 2015.

● F. Abel, “How do you squeeze 1000 FPGAs into a DC rack?” online at LinkedIn
● The cloudFPGA project page at ZRL: https://www.zurich.ibm.com/cci/cloudFPGA/

B. Ringlein / cloudFPGA Team / cFDevOps Workshop May 2020 / © 2020 IBM Corporation 29

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 27
	Slide 28
	Slide 29

