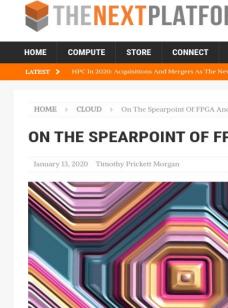
openRole: Can we bring 'Design once, run everywhere' to FPGAs?


Burkhard Ringlein & cloudFPGA Team Zurich **IBM Research Europe**

FPL Workshop on DevOps support for Cloud FPGA platforms, 2020-09-04

FPGAs are spreading in DCs and Clouds...

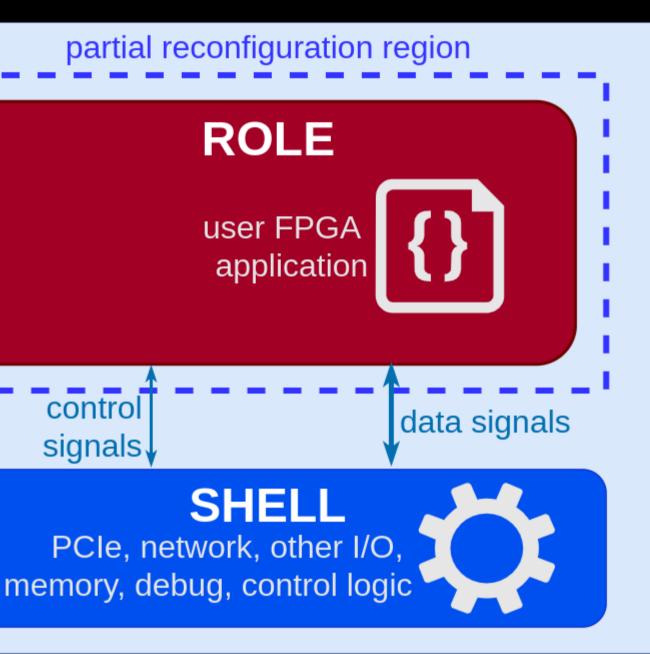
- ...that's why we are here
- Further Examples:
 - AWS FPGA instances
 - Microsoft's Project Brainwave
 - OC-Accel/Snap
 - PC², Galapagos, cloudFPGA, etc...
- Consequences:
 - Cloud and Datacenter are typically multi-user environments
 - \rightarrow Constrains the architecture
 - Usually, not all app developers want to deal with the I/O details of specific boards
 → Vendors provide platforms

Reconfigurable/FP Performance Com

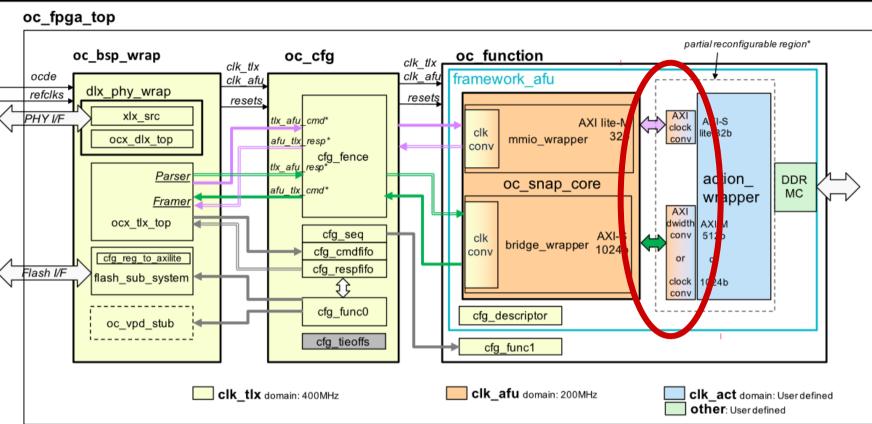
Home | Agenda | Submissions | Program Committee

Fifth International Workshop on Heterogeneous High-performance Recor

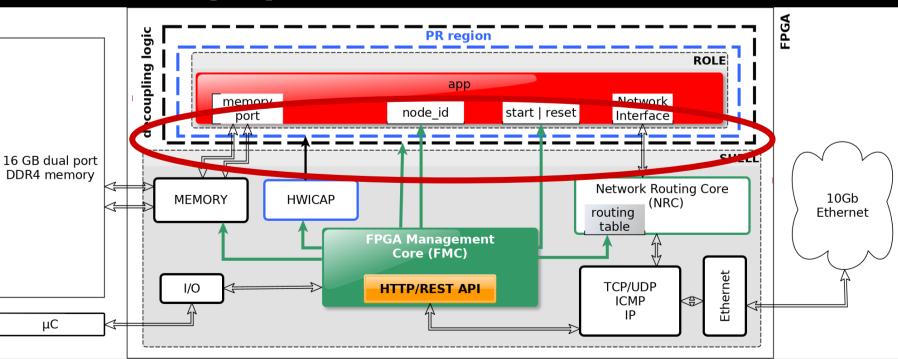
Sunday, November 17, 2019 (9:00am to 5:30pm) Denver, CO


Held in conjunction with: SC19: The International Conference for Hig

				~	
DRM	🐟 inaccel	PRODUCTS 👻	SOLUTIONS - RESOURCES -	DOCS CONTACT -	GET STARTED
CONTROL CODE AI HPC ENTER				Python"	
e New Normai → HPC			InAccel Cluster Manager		
And The Cloud	InAccel FF	GA orchestrator	InAccel Runtime	ý java	
FPGA AND THE CLOUD		ted Deployment,		inaccel	
[1		g and Resource ent of FPGA clusters	Drivers		
		est it on your premise	Kernels FPGAs Server		
	© Te	est it on your browser		V.	
					[17]
	Acceleration made simple				
The International Conference for High Perform Computing, Networking, Storage, and Analysis				elopers Support	About
comparing, recording, storage, and Anarysis		Advantages Solutions	Cloud to On-Pren		
	[12] Built for Any Server, Any Cloud				
	[12]	Built f	or Any Serv	er, Any Clou	d
PGA Clusters for Hial	la al		or Any Serv	Ĩ	5.0
PGA Clusters for Higl	la al	Deploy anywhe	ere – from the private d	Ĩ	_
	la al	Deploy anywhe	ere – from the private d	ata center to the public	_
	la al	Deploy anywhe Deploy anywhe On-Premis THENEXTPLAT HOME COMPUTE STORE CONN	ere – from the private d e FORM ECT CONTROL CODE	ata center to the public Cloud AI HPC ENTERF	cloud [3
	la al	Deploy anywhe	ere – from the private d e FORM ECT CONTROL CODE 19 To Happen To The FPGA → COMP	ata center to the public Cloud AI HPC ENTERF	cloud [3
nputing	h	Deploy anywhe Deploy anywhe On-Premis THENEXTPLAT HOME COMPUTE STORE CONN	ere – from the private d e FORM ECT CONTROL CODE by To Happen To The FYGA > COMP	ata center to the public Cloud AI HPC ENTERF	cloud [3
nputing	la al	Deploy anywhe	ere – from the private d e FORM ECT CONTROL CODE by To Happen To The FYGA > COMP	ata center to the public Cloud AI HPC ENTERF	cloud [3
onfigurable Computing (H ² RC'19)	h [13]	Deploy anywhe	ere – from the private d e FORM ECT CONTROL CODE by To Happen To The FYGA > COMP	ata center to the public Cloud AI HPC ENTERF	cloud [3
onfigurable Computing (H ² RC'19)	h [13]	Deploy anywhe	ere – from the private d e FORM ECT CONTROL CODE by To Happen To The FYGA > COMP	ata center to the public Cloud AI HPC ENTERF	cloud [3
onfigurable Computing (H ² RC'19) igh Performance Computing, Networking, Storage	h [13] and Analysis	Deploy anywhe	ere – from the private d e FORM ECT CONTROL CODE by To Happen To The FYGA > COMP	ata center to the public Cloud AI HPC ENTERF	cloud [3
onfigurable Computing (H ² RC'19)	h [13] and Analysis	Deploy anywhe	ere – from the private d e FORM ECT CONTROL CODE by To Happen To The FYGA > COMP	ata center to the public Cloud AI HPC ENTERF	rise Hyperscale

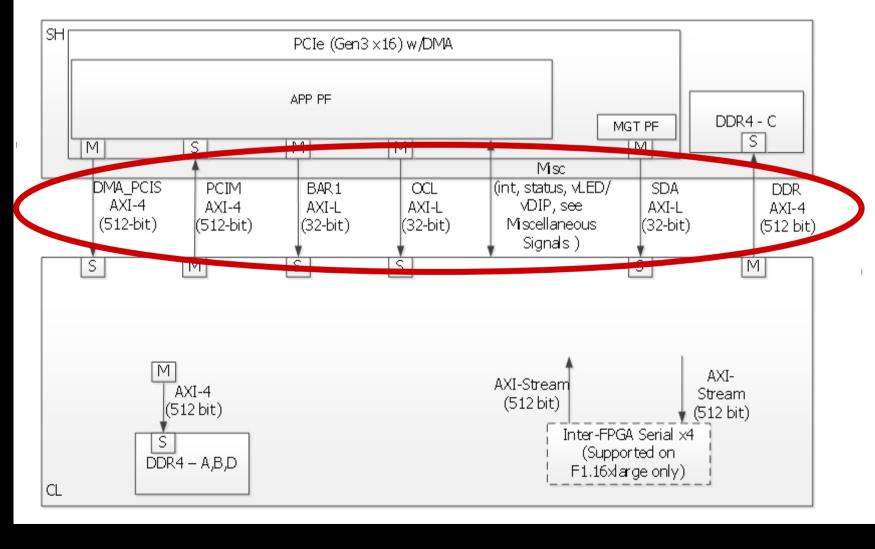

Providing a platform: The Shell Role Architecture (SRA)

- Split the FPGA design into:
 - a platform specific part: **SHELL**
 - an application specific part: **ROLE**
- The SRA design pattern offers:
 - I/O abstractions
 - different privilege levels
 - improves platform security (especially in combination with partial reconfiguration)
- Consequently: SRAs are used frequently (by all major Cloud vendors)
- SRAs are "the APIs of FPGA app developers"

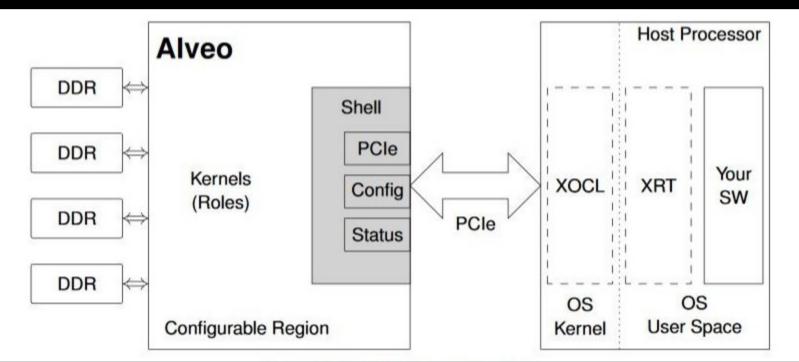


Some examples of SRAs

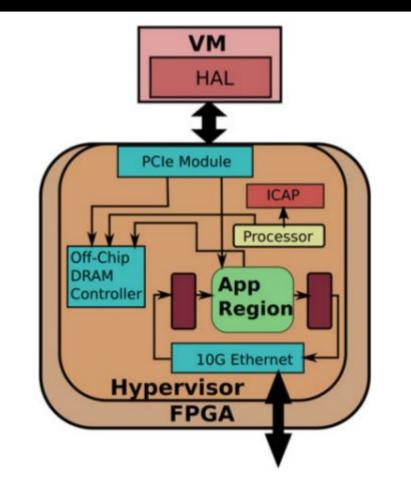
OC-Accel (OpenCAPI) [2]


cloudFPGA [14]

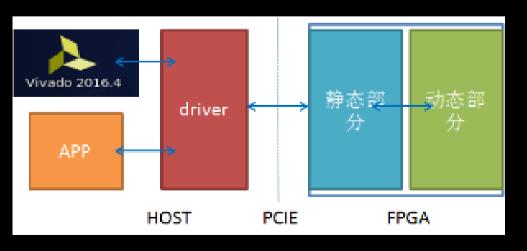
AWS [1]


Shell Interfaces

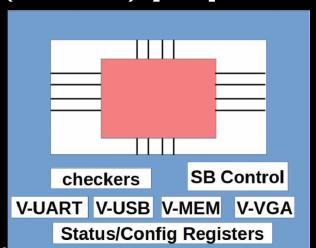
The following diagram and table summarize the various interfaces between the Shell and CL as defined in cl ports.vh.

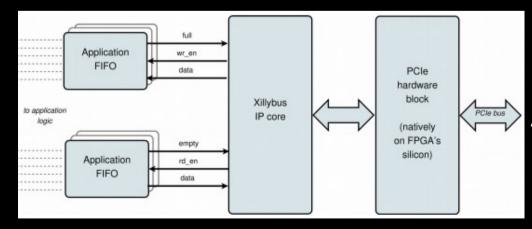


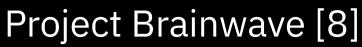
Some more examples of SRAs

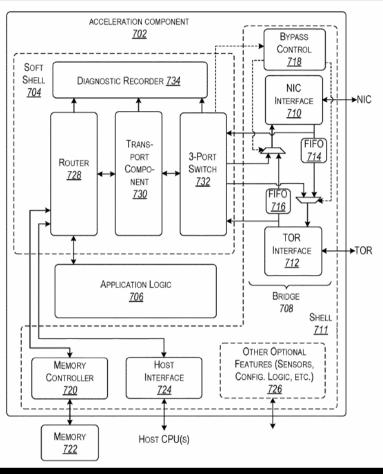

Alveo cards [7]

Galapagos FPGA Hypervisor [5]

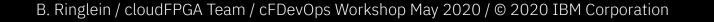



Baidu FPGA Cloud server [15]




B. Ringlein / cloudFPGA Team / cFDevOps Workshop May 2020 / © 2020 IBM Corporation

Hardware Sandboxes (Florida) [16]



Xillybus (kind of) [9]

...and counting...

The Problem: Every vendor provides a different interface

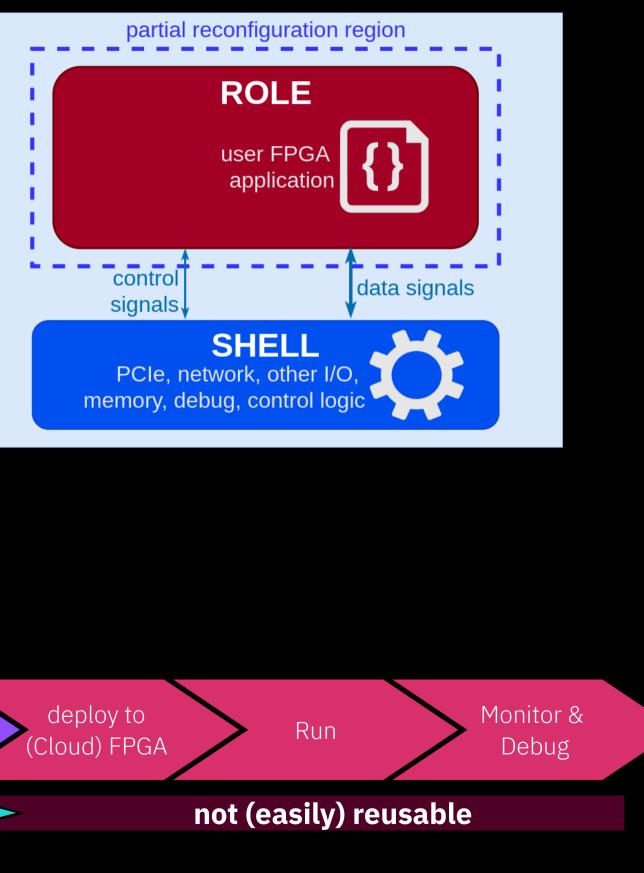

AWS F1 SDK **Xilinx Vitis** environment

Intel's oneAPI

Microsoft Sandpiper (?)

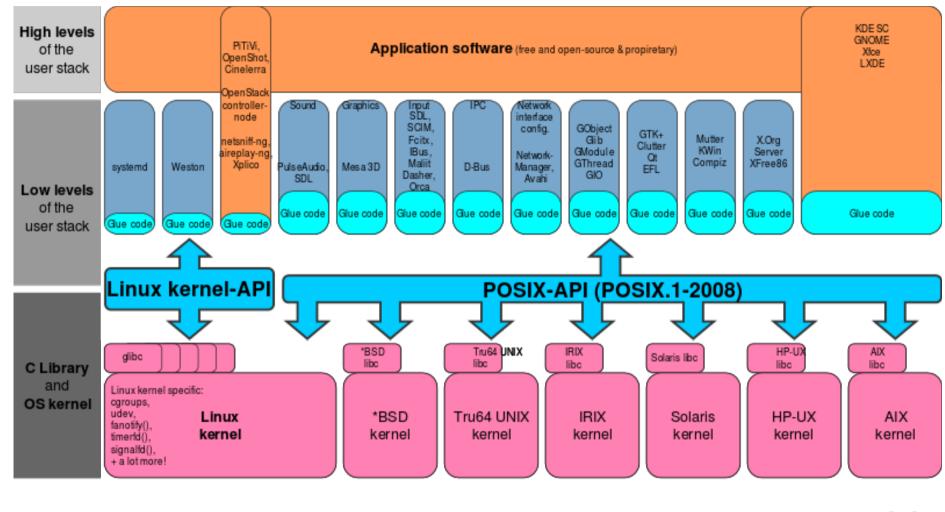
FPGA app developer

OC-Accel


- FPGA application development is tightly coupled to interfaces (i.e. "I/O")
- to achieve low latency / high throughput: run time behavior and interfaces *must be considered* at design time (stalls, request latency, bursts...)
- \rightarrow FPGA applications are barely interface agnostic
- \rightarrow application depends on Shell interfaces ("APIs")
- → limited re-usability & portability

What would be a better solution?

- **limited (or no) portability** of FPGA designs is another "roadblocker" in the way of FPGAs
- (good) reasons for change of platforms:
 - elasticity, scaling
 - evolution of platforms
 - Cloud vendor change, business decisions, etc.
- re-usable Roles would greatly accelerate the adaption of new platforms
 → and consequently, the growth of the ecosystem


with **portable / reusable Roles**:

Once upon a time...

- late 1970s: many disparate versions of OSs ullet
- **POSIX: Portable Operating System Interface**
- Originated 1988 to maintain compatibility ightarrowbetween OSs
- A POSIX compliant application can be compiled and deployed on every POSIX compliant OS, without code changes
- Latest update: IEEE Std 1003.1-2017 ightarrow
- Linux, macOS & Android are POSIX-compliant (but extend the API with custom calls) → a (well-designed) SW application can be ported effortless between these platforms
- (Windows Kernel offers a POSIX compatibility layer) ullet

[4]

POSIX = code once, run everywhere, if you have a compiler

What does POSIX bring?

- POSIX defines APIs and data structures for OS system calls (among other things)
- Any program that:
 - applies the POSIX API of the structs
 - uses a programming language that offers a POSIX compliant compiler (for the target platform)
 - \rightarrow can be compiled and executed on any **POSIX compliant Operating System** without further code changes
- POSIX also specifies the commands and flags to invoke the compiler (e.g. cc or c99 etc.)
- POSIX does not provide an implementation for the compilers or the system calls

man 3p sendto \$ SENDTO(3P)

SYNOPSIS #include <sys/socket.h>

> ssize_t sendto(int socket, const void *message, size_t length, int flags, const struct sockaddr *dest_addr, socklen_t dest_len);

DESCRIPTION

NAME

The sendto() function shall send a message through a connection-mode or connectionless-mode socket. If the socket is connectionless-mode, the message shall be sent to the address specified by dest_addr. If the socket is connection-mode, dest_addr shall be ignored.

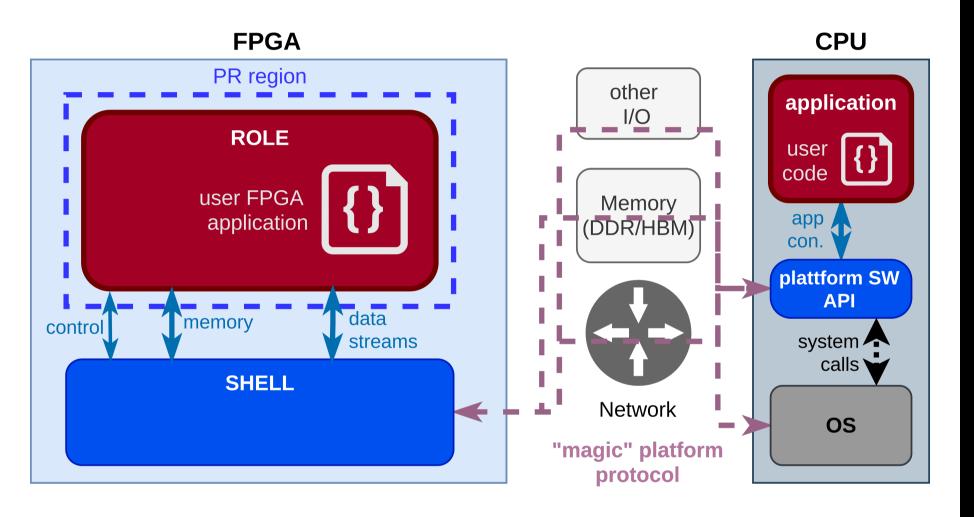
RETURN VALUE

Upon successful completion, sendto() shall return the number of bytes sent. Otherwise, -1 shall be returned and errno set to indicate the error.

ERRORS

.

.

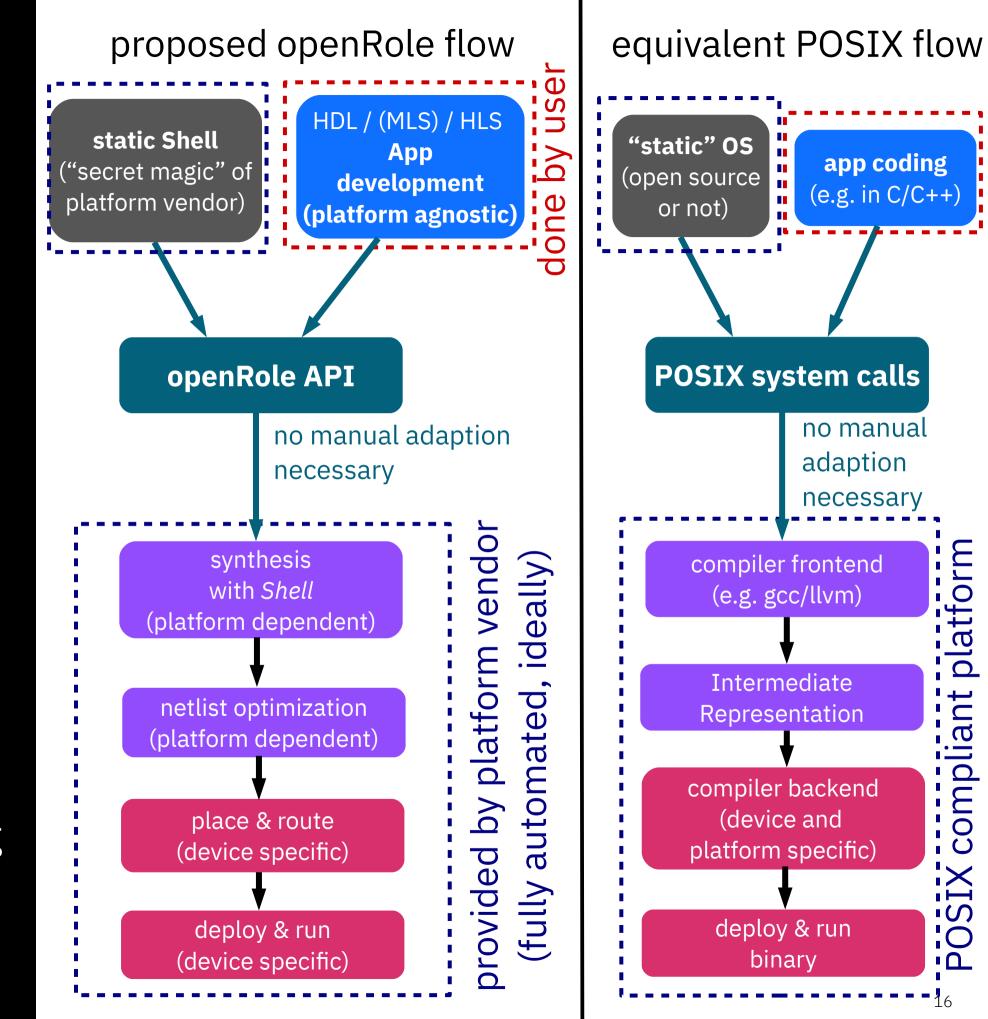

POSIX Programmer's Manual

sendto - send a message on a socket

The sendto() function shall fail if:

Can we do this for FPGAs too?

Can we bring "design once, run everywhere" to FPGAs? → the **openRole** proposal


SRAs have already common concepts

- schema
- Besides configuration & control registers, there are usually (one of) two communication channels:
 - address based: PCIe, via Memory (AXI4 Full)
 - stream based: network or PCIe abstraction (AXI4 Stream)
- Stream- and address-based communication can abstract every fabric (PCIe, CXL, Ethernet, Infiniband, etc.)
- Define an interface for this level of abstraction that is valid for all kind of platforms

• usually FPGA applications exist not alone: See as part of a (complex) application communication

Design flow with **openRole**

- allow the **compilation/synthesis** of any Role for any compliant Platform
 - it is *not* limiting any platform or application implementation
 - it is *not* limiting any platform specific optimization
- \rightarrow enables portable FPGA designs
 - SRAs have already common concepts
 - design flows are actually automated and similar across platforms and vendors
 - \rightarrow we have to agree on a **common interface**
- it is about portable FPGA designs, not porting Software to FPGAs

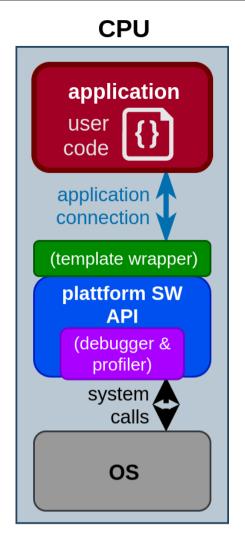
FPGA PR region ROLE user FPGA application config & ctrl registers interrupts network memory (on-board / off-board) (AXI Interconnect) (AXI Interconnect) memory AXI4 Lite 4x AXI4 stream AXI4 stream 2x AXI4 full (visible to (data & meta) the user) (debugger & (debugger & (event logger) profiler) profiler) SHELL

entity is **oR Role** is port (piClk : in std ulogic; std ulogic; : in piRst Configuration & Ctrl Registers AXI4-Lite -----biOR control AXI AWVALID : in std ulogic; biOR_control_AXI_AWREADY : out std ulogic; biOR control AXI AWADDR std ulogic vector (15 downto 0); : in ---- Input AXI-Write Stream Interface ----siNetwork_Data_tdata std_ulogic_vector(63 downto 0); : in siNetwork Data tkeep std ulogic vector(7 downto 0); : in siNetwork_Data_tvalid : in std ulogic;); end **oR_Role;**

openRole: ideas for a standard – FPGA side

- solely based on AMBA AXI4
- **one** defined interface ("API")
- bus-width adaption done with AXI Interconnects ("Template parameter")
- Interface includes:
 - stream based and address based communication
- - control registers (and virtual interrupts)
- The use of a standard AXI-based interface allows the straightforward integration of:
 - debug probes
 - performance profilers

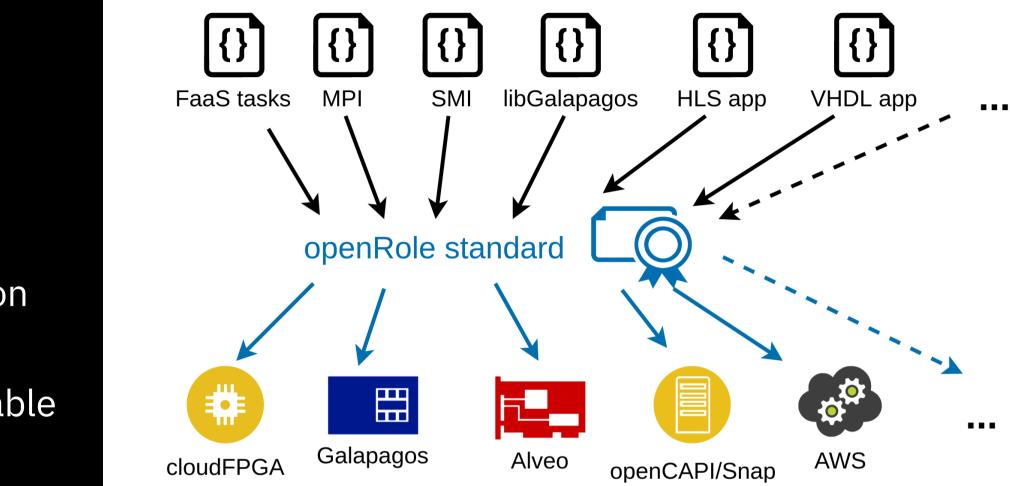
openRole: ideas for a standard – CPU side


- every FPGA Role/app needs some control by the platform or communication with some SW app
- The app developer is only interested in the interface between SW app and FPGA Role, *not* how the data gets there
- We need also an unified SW interface, e.g.:
 - oR_configure(...)
 - oR_write & oR_read (address based)
 - oR_send & oR_receive (stream based)
- All *Roles* should be identified with an integer **role_id** (not PCIe address, or IP address, etc.) to have common *meta data*

oR_return oR_write(oR_role_id role_id, const oR_word *data, oR_address start_address, oR_len length);

oR_return oR_read(oR_role_id role_id, oR_word *data, oR_address start_address, oR_len length);

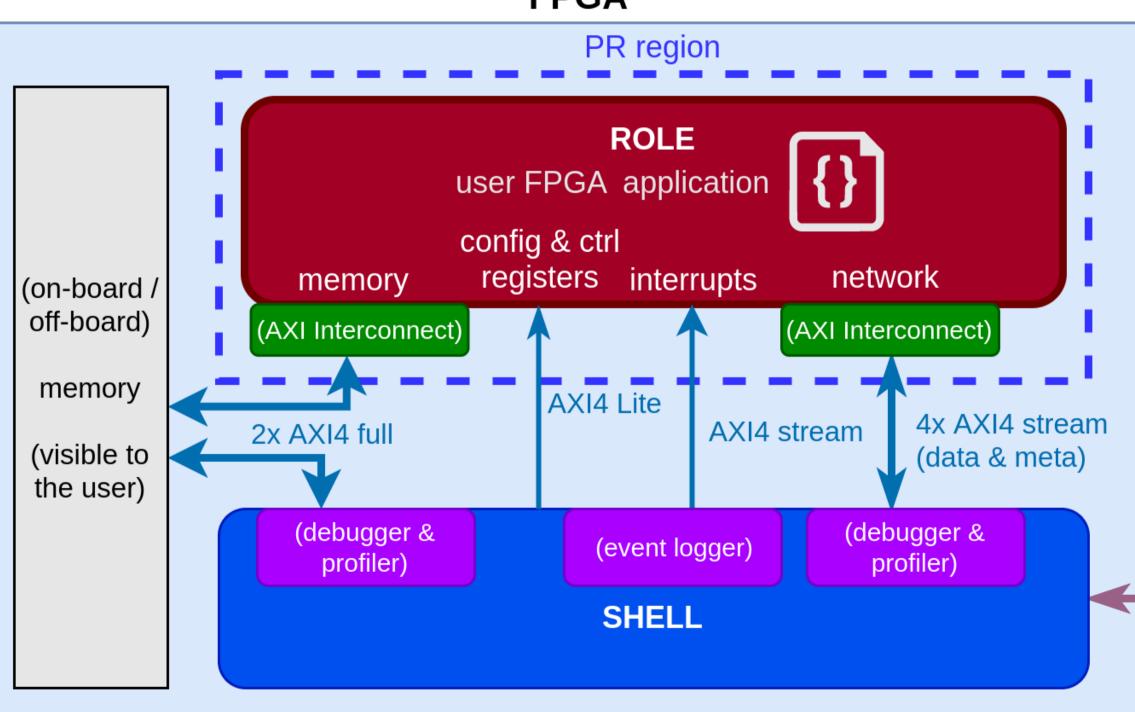
oR_return oR_send(oR_role_id role_id, const oR_word *data, oR len length);


oR_return **oR_recv**(oR_role_id role_id, oR_word *data, oR_len length);

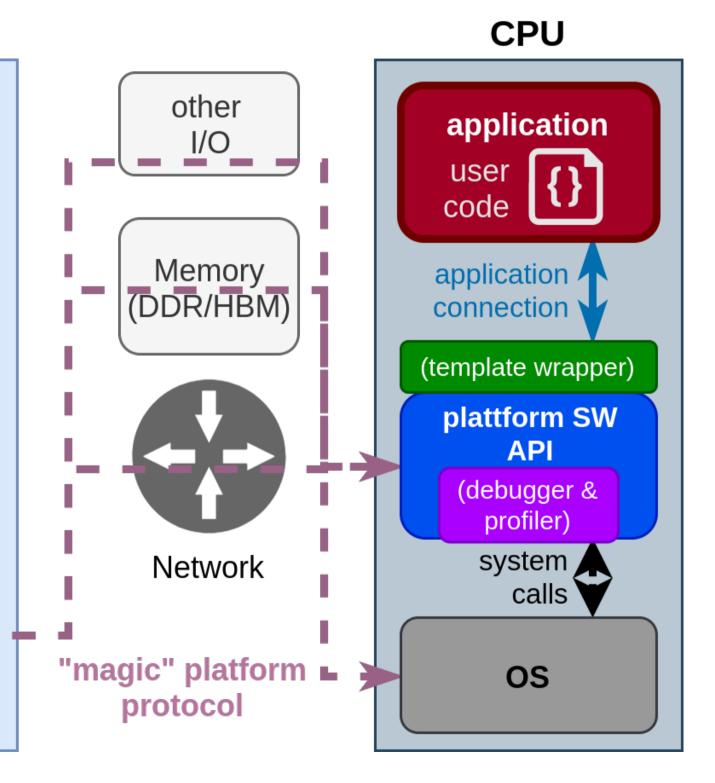
oR_return **oR_configure**(oR_role_id role_id, const oR_word *config_to_write);

Summary: The openRole proposal

- Enable **"design once, run everywhere"** for heterogeneous CPU-FPGA platforms
- **NOT** an implementation, it's a standard for abstracting configuration and communication from a particular HW
- **NOT** a programming model, it is about portable FPGA designs
- requires a "compiler" for each platform
- but does not require changes to the code
- published as "Header Files", "VHDL entities" and "PDFs" by the community
- interested in shaping openRole? You would do it completely different?
 → contact us

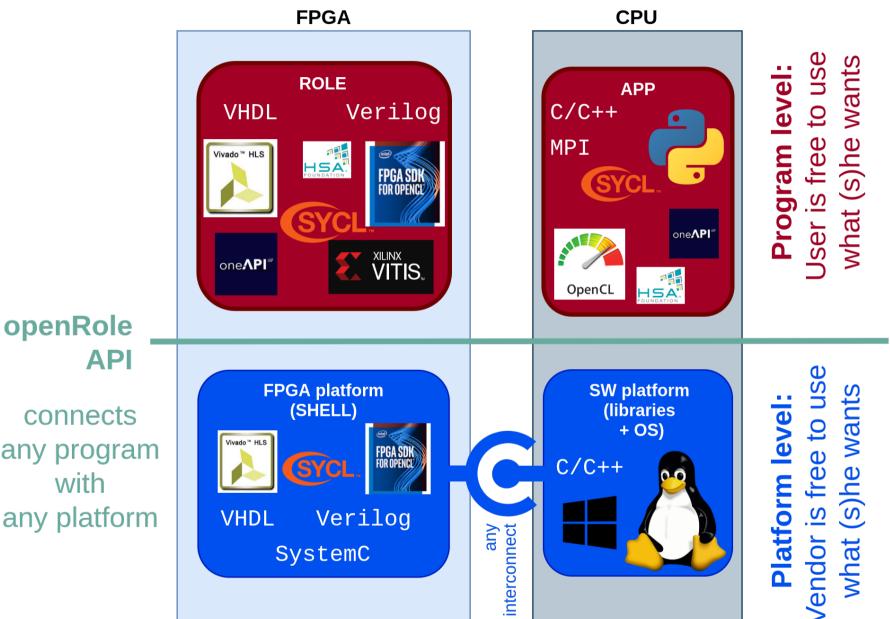


Appendix



openRole: ideas for a standard – system view

FPGA



openRole should **not** limit languages or tools

openRole is also **not** a programming model or a transport protocol

...it just connects arbitrary programs with arbitrary platforms.

connects any program with any platform

References

[1] https://github.com/aws/aws-fpga/blob/master/hdk/docs/AWS_Shell_Interface_Specification.md#ShellInterfaces [2] https://opencapi.github.io/oc-accel-doc/ [3] https://www.xilinx.com/applications/data-center.html [4] https://commons.wikimedia.org/wiki/File:Linux_kernel_API.svg [5] https://doi.org/10.1007/978-3-319-92792-3_2 [6] https://commons.wikimedia.org/wiki/File:Dieric_Bouts_013.jpg [7] https://developer.xilinx.com/en/articles/acceleration-basics.html [8] US20190190847A1: Allocating acceleration component functionality for supporting services [9] http://xillybus.com/downloads/xillybus_product_brief.pdf [10] https://www.nextplatform.com/2020/01/13/on-the-spearpoint-of-fpga-and-the-cloud/ [11] https://www.nextplatform.com/2020/01/14/the-inevitability-of-fpgas-in-the-datacenter/ [12] http://sc19.supercomputing.org/proceedings/bof/bof_pages/bof115.html [13] https://h2rc.cse.sc.edu [14] https://doi.org/10.1109/FPL.2019.00054 [15] https://cloud.baidu.com/doc/FPGA/s/Ajwvyh11e [16] https://doi.org/10.1109/HPEC.2019.8916526 [17] https://inaccel.com

All remaining images are from IBM DAM or IBM Websites or created by the author.

cloudFPGA: Further Reading

- B. Ringlein, F. Abel, A. Ditter, B. Weiss, C. Hagleitner and D. Fey, "ZRLMPI: A Unified Programming Model for Reconfigurable Heterogeneous Computing Clusters" in 28th IEEE International Symposium On Field-Programmable Custom Computing Machines (FCCM), 2020.
- B. Ringlein, F. Abel, A. Ditter, B. Weiss, C. Hagleitner and D. Fey, "System architecture for network-attached FPGAs in the cloud using partial reconfiguration," in 29th International Conference on Field Programmable Logic and Applications (FPL), 2019.
- F. Abel, J. Weerasinghe, C. Hagleitner, B. Weiss, S. Paredes, "An FPGA Platform for Hyperscalers," in IEEE 25th Annual Symposium on High-Performance Interconnects (HOTI), Santa Clara, CA, pp. 29–32, 2017.
- Weerasinghe, F. Abel, C. Hagleitner, A. Herkersdorf, "Disaggregated FPGAs: Network performance comparison against baremetal servers, virtual machines and Linux containers," in IEEE International Conference on Cloud Computing Technology and Science (CloudCom), Luxembourg, 2016.
- J. Weerasinghe, R. Polig, F. Abel, "Network-attached FPGAs for data center applications," in IEEE International Conference on Field-Programmable Technology (FPT '16), Xian, China, 2016.
- J. Weerasinghe, F. Abel, C. Hagleitner, A. Herkersdorf, "Enabling FPGAs in hyperscale data centers," in IEEE International Conference on Cloud and Big Data Computing (CBDCom), Beijing, China, pp. 1078–1086, 2015.
- F. Abel, "How do you squeeze 1000 FPGAs into a DC rack?" online at LinkedIn
- The cloudFPGA project page at ZRL: https://www.zurich.ibm.com/cci/cloudFPGA/

B. Ringlein / cloudFPGA Team / cFDevOps Workshop May 2020 / © 2020 IBM Corporation

29