
spcl.inf.ethz.ch

@spcl_eth

TIZIANO DE MATTEIS

On the development of distributed applications with Intel
FPGA SDK for OpenCL

JOHANNES DE FINE LICHT, , JAKUB BERÁNEK, TAL BEN-NUN, TORSTEN HOEFLER AND OTHER AT SPCL, ETH

spcl.inf.ethz.ch

@spcl_eth

Modern high performance FPGAs and
High-Level Synthesis (HLS) tools are

attractive for HPC

2

Reconfigurable Hardware is a viable option to
overcome architectural von-Neumann

bottleneck

However, they are rarely considered in HPC: low productivity, lacks of re-usable
components, very few real use cases

spcl.inf.ethz.ch

@spcl_eth

3

Our contributions to the FPGA-HPC community

Programming
Model

To provide performance
portability in

Heter. Architectures
(not only FPGA!)

Libraries/Tools

To increase HPC
programming
productivity

Applications

To show the potentials of
reconfigurable hardware

in real applications

StencilFlow

aCe aCeML

spcl.inf.ethz.ch

@spcl_eth

Traditional, buffered messages (MPI) are replaced with pipeline-friendly transient channels

4

Streaming Messages – A Distributed Memory Programming Model for FPGAs

FPGA 0

APP

FPGA 1

APP

FPGA 2

APP

FPGA 3

APP Transport
Layer

Transport
Layer

Transport
Layer

Transport
Layer

Channel channel(N, my_rank + 2, 0); // Dynamic target
#pragma pipeline
for (int i = 0; i < N; i++)

channel.Push(compute(data[i]));

dcba

Combines the best of hardware programming
and message passing:
▪ Channels are transiently established, as ranks

are specified dynamically
▪ Data is pushed to the channel during

processing in a pipelined fashion

Key facts:
▪ Each channel is identified by a port, used to

implements an hardware streaming interface
▪ All channels can operate in parallel
▪ Ranks can be programmed either in a SPMD or

MPMD fashion
▪ No need to rebuild bitstreams if the topology

(or number of ranks) changes

T. De Matteis, J. de Fine Licht, J. Beránek, T. Hoefler. “Streaming Message Interface: High-Performance Distributed Memory Programming on Reconfigurable Hardware”. SC’19

spcl.inf.ethz.ch

@spcl_eth

We implemented a proof-of-concept HLS-based implementation, targeting Intel FPGA (github.com/spcl/smi)

5

Reference Implementation

Port numbers declared in Open_channel primitives
are used to lay down the hardware

SMI implementation organized in two main components

Messages packaged in network packets, forwarded using packet switching on dedicated intra-FPGA connections

32 Bytes

spcl.inf.ethz.ch

@spcl_eth

Each CK has a dynamically loaded routing table that
is used to forward data accordingly

6

Reference implementation – Intel FPGA SDK for OpenCL

If the network topology or number of rank change, we just
need to rebuild the routing tables, not the entire bitstream

We had to deal with two types of channels (FIFO buffers)

▪ On-chip channels: the ones from/to applications and between Comm. Kernels
channel long chan;

▪ I/O channels: network communications mapped to physical interface
channel SMI_Network_message __attribute__((io("kernel_output_ch0")));

Each FPGA net. connection is managed by a pair of
Communication Kernels (CK)

spcl.inf.ethz.ch

@spcl_eth

7

Implementation

Testbed: Nallatech 520N boards (Stratix 10), each with 4x 40Gbit/s QSFP, offered as 8 I/O channels

FPGA0

FPGA1

FPGA2

FPGA3

FPGA4

FPGA5

FPGA6

FPGA7

We wish to thank the Paderborn Center for Parallel Computing (PC2) for granting access, support, maintenance, and upgrades on their Noctua multi-FPGAs system.

Possibility to use different topologies and different number of ranks, by reconfiguring optical connections and
by changing SMI routing

We needed a way to efficiently debug/emulating/running this, using different combinations
of topologies, number of ranks, …

spcl.inf.ethz.ch

@spcl_eth

The Intel FPGA SDK for OpenCL offers a convenient way of emulating I/O channels, by means of files:

▪ an I/O input channel is emulated by reading from a file,

▪ and, and I/O output channel is emulated by writing to a file.

8

Emulation

But we need to write a lot of code to evaluate even a single configuration:

Our approach:

FPGA0

P0

P1

FPGA1

P0

P1

a.chan

FPGA0

P0

P1

FPGA1

P0

P1

writes to a.chan reads from a.chan writes to b.chan reads from b.chan

spcl.inf.ethz.ch

@spcl_eth

9

Development Workflow

1. The Code Generator parses the user devices code and creates the SMI communication logic

2. The generated and user codes are synthesized. For SPMD program, only one instance of the bitstream is generated

3. A Routes Generator creates the routing tables (user can change the routes w/o recompiling the bitstream)

4. The user host program takes routing table and bitstream, and uses generated host header to start all SMI components

spcl.inf.ethz.ch

@spcl_eth

#include <smi.h>

__kernel void App(int N, int root, SMI_Comm comm, /* ... */) {

SMI_BChannel chan = SMI_Open_bcast_channel(N, SMI_FLOAT, 0, root, comm);

int my_rank = SMI_Comm_rank(comm);

#pragma pipeline // Pipelined loop

for (int i = 0; i < N; i++) {

int data;

if (my_rank == root)

data = /* create or load interesting data */;

SMI_Bcast(&chan, &data);

// ...do something useful with data...

}

10

Code-generation for Emulation – Device Code

User Provided

#include "smi/network_message.h"

// maximum number of ranks in the cluster
#define MAX_RANKS 8
//…

// QSFP channels
#if SMI_EMULATION_RANK == 0
channel SMI_Network_message io_out_0 __attribute__((io("emulated_channel_r0c0_r6c1")));
channel SMI_Network_message io_in_0 __attribute__((io("emulated_channel_r6c1_r0c0")));
channel SMI_Network_message io_out_1 __attribute__((io("emulated_channel_r0c1_r2c0")));
channel SMI_Network_message io_in_1 __attribute__((io("emulated_channel_r2c0_r0c1")));
channel SMI_Network_message io_out_2 __attribute__((io("emulated_channel_r0c2_r1c3")));
channel SMI_Network_message io_in_2 __attribute__((io("emulated_channel_r1c3_r0c2")));
channel SMI_Network_message io_out_3 __attribute__((io("emulated_channel_r0c3_r1c2")));
channel SMI_Network_message io_in_3 __attribute__((io("emulated_channel_r1c2_r0c3")));
#endif
#if SMI_EMULATION_RANK == 1
channel SMI_Network_message io_out __attribute__((io("emulated_channel_r1c0_r7c1")));
channel SMI_Network_message io_in_0 __attribute__((io("emulated_channel_r7c1_r1c0")));
…

Codegenerated

$ make app_emulator

spcl.inf.ethz.ch

@spcl_eth

#include <hlslib/intel/OpenCL.h>

#include "smi_generated_host.c“

//…

int main(…){
MPI_Init(…);

hlslib::ocl::Context context();

auto program = context.MakeProgram(program_path);

std::vector<hlslib::ocl::Buffer<char, hlslib::ocl::Access::read>> buffers;

SMI_Comm comm=SmiInit_broadcast(rank, rank_count, ROUTING_DIR, context,
program, buffers);

// create and launch app kernel …

11

Code-generation for Emulation – Host Code

User Provided

$ make app_host

Then, what is left to do is to execute the application using the MPI Launcher:

$ env CL_CONTEXT_EMULATOR_DEVICE_INTELFPGA=8 mpirun -np 8 ./app_host emulator

(and keep your finger crossed)

SMI_Comm SmiInit_broadcast(int rank, int ranks_count,const char* routing_dir,…){

const int ports = 1;
const int cks_table_size = ranks_count;
const int ckr_table_size = ports * 2;
// load routing tables …

// create buffers for CKS/CKR and copy routing tables …

// start communication kernels…

// return the communicator
} Codegenerated

spcl.inf.ethz.ch

@spcl_eth

We apply the same solution also in Stencilflow, where all of this is further automated an abstracted-away

12

Stencilflow

{ "dimensions": [4096, 4096],
"vectorization": 8,
"outputs": ["d"],
"inputs": {
"a": {"data_type": "float32", "input_dims": ["j","k"]},
"c0": {"data_type": "float32", "input_dims": []},
"c1": {"data_type": "float32", "input_dims": []},
"c2": {"data_type": "float32", "input_dims": []},
"c3": {"data_type": "float32", "input_dims": []},
"c4": {"data_type": "float32", "input_dims": []}

},
"program": {
"b": {
"data_type": "float32",
"boundary": {"a": {"type": "constant", "value": 0}},
"computation": "b = c0*a[j,k] + c1*a[j-1,k] + c2*a[j+1,k] +

c3*a[j,k-1] + c4*a[j,k+1]"
},
"d": {
"data_type": "float32",
"boundary": {"b": {"type": "constant", "value": 0}},
"computation": "c = c0*b[j,k] + c1*b[j-1,k] + c2*b[j+1,k] +

c3*b[j,k-1] + c4*b[j,k+1]"
} } }

JSON-based domain-specific
frontend

Stencil DAG

Abstract Hardware Mapping

aCe Dataflow Graph Expanded Graph

Generated code

Intel FPGA OpenCL

Reference C++

…

% bin/run_program.py diffusion.json hardware

High-level Python interface

J. de Fine Licht, A. Kuster, T. De Matteis, T. Ben-Nun, D.Hofer, T. Hoefler. StencilFlow: Mapping Large Stencil Programs to Distributed Spatial Computing Systems. CGO 2021.

spcl.inf.ethz.ch

@spcl_eth

We apply the same solution also in Stencilflow, where all of this is further automated an abstracted-away

13

Stencilflow

{ "dimensions": [4096, 4096],
"vectorization": 8,
"outputs": ["d"],
"inputs": {
"a": {"data_type": "float32", "input_dims": ["j","k"]},
"c0": {"data_type": "float32", "input_dims": []},
"c1": {"data_type": "float32", "input_dims": []},
"c2": {"data_type": "float32", "input_dims": []},
"c3": {"data_type": "float32", "input_dims": []},
"c4": {"data_type": "float32", "input_dims": []}

},
"program": {
"b": {
"data_type": "float32",
"boundary": {"a": {"type": "constant", "value": 0}},
"computation": "b = c0*a[j,k] + c1*a[j-1,k] + c2*a[j+1,k] +

c3*a[j,k-1] + c4*a[j,k+1]"
},
"d": {
"data_type": "float32",
"boundary": {"b": {"type": "constant", "value": 0}},
"computation": "c = c0*b[j,k] + c1*b[j-1,k] + c2*b[j+1,k] +

c3*b[j,k-1] + c4*b[j,k+1]"
} } }

JSON-based domain-specific
frontend

Stencil DAG

Abstract Hardware Mapping

aCe Dataflow Graph Expanded Graph

Generated code

Intel FPGA OpenCL

Reference C++

…

% bin/run_program.py diffusion.json hardware

High-level Python interface

J. de Fine Licht, A. Kuster, T. De Matteis, T. Ben-Nun, D.Hofer, T. Hoefler. StencilFlow: Mapping Large Stencil Programs to Distributed Spatial Computing Systems. CGO 2021.

We leveraged SMI to scale to multi-devices

We exploited its codegeneration and build automation to, first, verify
our designs, and, later, generate the bitstreams

(saving several hours of synthesis)

This allowed us to easily derive multi-Tops designs directly from an
high-level description of the problem

spcl.inf.ethz.ch

@spcl_eth

Code generation and build systems reduce developing time, and emulation is useful, but

it is not panacea

14

Wrap-up

If a (distributed) program emulates correctly, it does not mean that it will work in hardware:

▪ It may be not helpful to understand if there is a deadlock (because of its threaded
execution model)

▪ The buffer depth is not the same of generated hardware

▪ It does not take into account the order of channel operations as implemented in the
generated hardware

▪ It could take forever

spcl.inf.ethz.ch

@spcl_eth

15

Wrap-up

Therefore we advocate for better development tools, that could ease programmers life:

▪ Precise emulation/simulation

▪ Full debugger

▪ The ability to inspect the status of (I/O) FIFO buffers

▪ Better reporting on the generated hardware

Emulation ≠ Debugging

We believe that these are necessary tools for HPC codes to start productively targeting
reconfigurable (distributed) platforms

spcl.inf.ethz.ch

@spcl_eth

Thank
You

github.com/spcl/smi

github.com/spcl/dace
github.com/spcl/stencilflow
github.com/definelicht/hlslib

