
cFDevOps: Workshop on DevOps Support for Cloud FPGA platforms @ FPL 2021

CHRISTIAN PILATO

Politecnico di Milano, Scientific Coordinator

christian.pilato@polimi.it

Climbing EVEREST: A design environment for
extreme-scale big data analytics on heterogeneous

platforms

Virtual Open System, Virtualization Leader

m.paolino@virtualopensystems.com

MICHELE PAOLINO

H2020 project funded under the call – "Big Data technologies and extreme-scale
analytics" [Kick-off on Oct 1, 2020][http://www.everest-h2020.eu]
• Big focus on FPGA acceleration in data centers and related issues è cloudFPGA

Key idea:
• a coordinated action with the appropriate technology areas (e.g., AI, analytics, software

engineering, HPC, Cloud technologies, IoT and edge/fog/ubiquitous computing) è FPGA acceleration in
(federated) data centers

• system engineering/tools to contribute to the co-design of federated/distributed systems è
EVEREST system development kit

EVEREST: Using cloudFPGA for Big Data Analytics

EVEREST @ cFDevOps 20212

standardized interconnection methods

architectures for collecting, managing and exploiting

data securityhardware acceleration

runtime management domain-specific extensions

virtualization

high-level synthesis

adaptive memory management

http://www.everest-h2020.eu/

Application Concepts

3

Weather-based prediction of
renewable energy production

Air-quality monitoring in industrial sites

Traffic modelling for intelligent
transportation

Three use cases provided by the application partners
• Looking for hardware acceleration (intense data computation) with efficient and secure data

management (distributed data sources)
• Possibility of AI/ML-based decision making
• Combination of the tasks in different pipelines

EVEREST @ cFDevOps 2021

EVEREST cloudFPGA: Key Features

EVEREST @ cFDevOps 20214

Network-attached solution composed of:
• Interface logic already designed (cF Shell) to support system integration

• TPC/UDP communication is managed transparently to the user logic

• User logic (ROLE) that can be easily designed and customized) with traditional HLS tools

Application code running on host
• Low-level libraries for host-FPGA

communication

Possibility to use a cluster of FPGAs
• IDE for allocation and management

of resources

Climbing EVEREST: Obstacles on the Road

EVEREST @ cFDevOps 20215

Programmability: Application developers have often limited hardware
skills and limited knowledge of the target platform
• How to specify the application functionality to get the best results?
• How to design the hardware accelerator and the memory

subsystem not only to optimize the performance but also to
avoid bottleneck

Portability: Designing a FPGA system is hard, but
designing an application for many systems is
even harder
• How to specify a platform-agnostic functionality?
• How to match such functionality with the actual

hardware?
• How to deal with dynamic changes?

EVEREST SDK: System Development Kit

EVEREST @ cFDevOps 20216

EVEREST
Application Development

EVEREST
Target System

EVEREST
Programming Environment

Workflow
pipeline Compilation

Framework
AI-based

decision making

Virtualized Runtime
Environment

Standard
programming models

EVEREST node

EVEREST Edge node

EVEREST Edge node
(disaggregated FPGA –

IBM CloudFPGA)

EVEREST Edge node
(disaggregated FPGA –

IBM CloudFPGA)

EVEREST Edge node
(disaggregated FPGA –

IBM CloudFPGA)

Emerging communication standards
+ Traditional TCP/IP connections

L
a
n
g
u
a
g
e
 a

n
d
 D

S
L
 F

ro
n
te

n
d

Unified IR

Standard
Big Data libraries

State-of-the-art
AI frameworks

EVEREST DSL
Extensions

- Data patterns
- Security extensions
- HW/SW partitioning directives
- ...

1 3 2
Architecture abstractionFunctionality description

4
Execution

Coordinated design environment composed of four major phases:
1. Application specification (data ▻ application and requirements)
2. Architecture abstraction (target system ▻ arch. description)
3. Programming environment (app+arch+reqs desc. ▻ hw/sw bin.)
4. Execution monitoring and management (hw/sw bin. ▻ execution)

EVEREST Programming Environment

EVEREST @ cFDevOps 20217

1. Compilation Environment: analyzes
application and creates all "variants"
based on architecture abstraction and
application/data requirements

• Unified IR framework (MLIR)
• Hardware acceleration and High-level

synthesis (Bambu, Vivado/Vitis HLS)
• Integration of non-functional properties

with domain-specific extensions

EVEREST Runtime Environment

Unified IR
framework

Implemented with high-level
abstractions, e.g., in MLIR

Middle-
end Opt-IR/

C-code

SW HW
Multi-variant and optimized IR with
SW/HW components (memory managers)

Meta-data/Info: HW
interfaces, variants info

Front-end

Backend
Implementation (SYCL, C, HDL,

meta-data, EVEREST APIs)

SW-optimization HW-optimization
HW-info

Standard
compilers

Bin/bit-
stream

Use case description, e.g., Short-time
prediction in traffic simulations

Application high-level
dataflow

ML-KernelSimulation
kernel

auto A = Matrix(m, n),
B = Matrix(m, n),
C = Matrix(m, n);

auto u = Tensor<3>
(n, n, n);

auto v = (A*B*C)(u);

Kernel DSL-spec, e.g., using
C++ syntax from [RINK19]

Possibility of using different
(ML) frameworks

Interoperability with
different HLS tools

Standard IR format and
exchange files

Novel domain-specific
extensions (format)

System and resource description (format)

Hardware Compilation Flow
Automated DSL-to-bitstream generation for accelerating selected
application kernels with specialized memory architectures

Annotated C code
/ LLVM IR / MLIR

HLS
(Vitis/Bambu)

Arch. Info

Mem. Gen.
(Mnemosyne)IP config.

System Integration
(Olympus)

DSL Src-to-Src (MLIR)
Compiler+DSE

Security/data
requirementsMem. Info

Security/data
requirements

Memory
access patternsIP requirements

Synthesis Tools

Platform-agnostic Code

Mnemosyne: https://github.com/chrpilat/mnemosyne
Bambu: https://github.com/ferrandi/PandA-bambu

EVEREST @ cFDevOps 20218

From DSL to Bitstream

kernel_body

PLM

void kernel_body(double S[11][11], double D[11][11][11], double u[11][11][11],
double v[11][11][11],
double t[11][11][11], double r[11][11][11], double t1[11][11][11],
double t3[11][11][11], double t0[11][11][11], double t2[11][11][11])

kernel_body

ctrl S D u v

t r t1 t3 t0 t2CE0 A0 Q0

kernel_body

PLM
CE1 A1 D1 WE1......

Read port Write port

S

D

r

u

v t3

t1 t0

t2

t

C. Pilato, et al. "System-Level Optimization of
Accelerator Local Memory for Heterogeneous
Systems-on-Chip" TCAD’17

cFDK

EVEREST @ cFDevOps 20219

Creation of Parallel Architectures

Bram
Ctrl

PLM0 ACC0

Ctrl

ctrl

PLM0

Ctrl

PLMm-1

…
ACC0

ctrl

Batch

Bram
Ctrl

A[MSBs]

PLM0

Ctrl

PLMm-1

…

ACCk-1

ctrl

ACC0

ctrl

A[MSBs]

…

Bram
Ctrl

EVEREST @ cFDevOps 202110

Preliminary Evaluation
• Xilinx Zynq UltraScale+ MPSoC ZCU106 board

• CFD simulation of 50,000 elements

• Preliminary comparison with
embedded ARM

K. Friebel, et al. "From Domain-Specific Languages to Memory-
Optimized Accelerators for Fluid Dynamics" HPCFPGA’21

EVEREST @ cFDevOps 202111

Next Step: Let’s Put Memory First
We are building a compilation flow based on
LLVM MLIR for automatic specialization:
• MLIR Input – From DSL descriptions of the system

functionality
• Data Organization – Determine which data resides

off chip (also based on user/compiler annotations)
• Layout – Reorganize communication to exploit local

memories (cache/PLM)
• Communication – Configure prefetcher to hide

transfer latency
• Local Partitioning – Determine multi-bank PLM

architecture (Mnemosyne1)
• HLS – Generate computation part (interfacing with

existing HLS tools, e.g., open-source Vitis HLS
frontend)

• HDL Output – Automated code generation and
system-level integration based on the target platform

S. Soldavini and C. Pilato. "Compiler Infrastructure for Specializing
Domain-Specific Memory Templates" LATTE’21

EVEREST @ cFDevOps 202112

EVEREST Runtime Environment

EVEREST @ cFDevOps 202113

Autotuning API

Runtime API

Seamless execution when varying
the system configuration

(resources, nodes, data, etc.)
Hiding communication latency

(e.g., prefetching)

How to collect system status and
expose it to the runtime?

2. Runtime Environment: implements
the selection of "variants" and the
hardware configuration based
on the system status

• Dynamic adaptation and autotuning
(mARGOt)

• Two-level runtime for (1) virtualization of
hardware resources regardless their distribution
and the low-level details of the platforms; (2) implement
functional decisions (mARGOt, HyperLoom)

EVEREST Runtime Virtualization

EVEREST @ cFDevOps 202114

The EVEREST runtime virtualization is based on specific host and
guest extensions:
• Host

• The hypervisor of reference is KVM, and the
Virtualized Infrastructure Manager is OpenStack

• Libvirt will be extended to recognize harwdare
accelerators and allocate them to the VMs. It will be
used as driver for OpenStack Nova

• Guests
• Will be extended with multi-node and

monitoring/profiling applications that communicate
with the host

• Guests will benefit from optimized communication
mechanisms based on shared memory

EVEREST Runtime Virtualization

EVEREST @ cFDevOps 202115

The EVEREST runtime key virtualization techniques will be FPGA
Virtualization and API remoting:

FPGA Virtualization: we consider both network-based and host-attached
approaches
• Network based: using cloudFPGA mentioned before
• Host attached: SR-IOV and mediated pass-through

used to allow guests direct access to the FPGA
partitions

• Single Root Input-Output Virtualization (SR-IOV)
enables the creation of multiple virtual functions

• Each of them will be mapped to a VM (and a
portion of the FPGA)

EVEREST Runtime Virtualization (ii)

EVEREST @ cFDevOps 202116

The EVEREST runtime key virtualization techniques will be FPGA
Virtualization and API remoting:

API remoting
• Virtualization at a library level will be implemented through

API remoting
• API calls in the guests will be redirected to the host
• A zero-copy shared memory mechanism is in place between

the host and guests OSes

EVEREST Runtime Virtualization at the edge

EVEREST @ cFDevOps 202117

The EVEREST runtime key virtualization focuses on both edge and cloud
sides:
• Arm, RISC-V, and x86 supported for the cloud side
• Specific virtualization solutions based on system resource partitioning are

developed to cope with security and safety requirements of edge systems
• VOSySmonitor and VOSySmonitoRV by Virtual Open Systems are based

respectively on Arm TrustZone and RISC-V PMP zones

EVEREST Runtime functional decision

EVEREST @ cFDevOps 202118

The EVEREST FPGA systems include a monitoring and decision
infrastructure for dynamic autotuning based on workload conditions

• Application variants (either software or hardware) are generated at design time
(compilation and hardware synthesis), and selected at run time based on the actual
available hardware resources

Application

Kernel
V1

Kernel
V2

Kernel
VNKnob

1
Knob
N…

… Application

Kernel
V1

Kernel
V2

Kernel
VNKnob

1
Knob
N…

… Application

Kernel
V1

Kernel
V2

Kernel
VNKnob

1
Knob
N…

…

HW 1 HW 2 HW N

mARGOt mARGOt mARGOt
Knowledge Knowledge Knowledge

AGORA

Theo

Knowledge

Kn
ob

X

Kn
ob

X

Kn
ob

X

Conclusions

EVEREST @ cFDevOps 202119

The main goal is to simplify the description of complex
Big Data applications and improve the

programmability of distributed FPGA-based systems

EVEREST is a new H2020 project that aims at simplyfing the use of FPGA for the
acceleration of Big Data applications
• Data-centric approach focusing on domain-specific extensions, high-level

synthesis, and dynamic adaptivity
• Three application use cases: weather-based renewable energy prediction, air-

quality monitoring of industrial sites, and intelligent traffic management
• CloudFPGA will be used as primary target
• Looking for interoperability with existing solutions
• EVEREST SDK will be released as open-source to the community

This project has received funding from the European
Union’s Horizon 2020 research and innovation
programme under grant agreement No 957269

