DESIGN ENVIRONMENT
FOR EXTREME-SCALE BIG DATA ANALYTICS
ON HETEROGENEOUS PLATFORMS

- EVEREST

cFDevOps: Workshop on DevOps Support for Cloud FPGA platforms @ FPL 2021

Climbing EVEREST: A design environment for
extreme-scale big data analytics on heterogeneous
platforms

CHRISTIAN PILATO MICHELE PAOLINO
Politecnico di Milano, Scientific Coordinator Virtual Open System, Virtualization Leader

christian.pilato@polimi.it m.paolino@yvirtualopensystems.com

EVEREST: Using cloudFPGA for Big Data Analytics

H2020 project funded under the call — "Big Data technologies and extreme-scale
analytics" [Kick-off on Oct 1, 2020][http://www.everest-h2020.eu]

* Big focus on FPGA acceleration in data centers and related issues = cloudFPGA

Key idea:

* a coordinated action with the appropriate technology areas (e.g., Al, analytics, software
engineering, HPC, Cloud technologies, loT and edge/fog/ubiquitous computing) =2 FPGA acceleration in

(federated) data centers

* system engineering/tools to contribute to the co-design of federated/distributed systems =»
EVEREST system development kit

adaptive memory management architectures for collecting, managing and exploiting
virtualization _
| | hardware acceleration data security
high-level synthesis standardized interconnection methods

: domain-specific extensions
runtime management

2 EVEREST @ cFDevOps 2021 —~1EVEREST

http://www.everest-h2020.eu/

Application Concepts

Three use cases provided by the application partners

 Looking for hardware acceleration (intense data computation) with efficient and secure data
management (distributed data sources)

* Possibility of Al/ML-based decision making Air-quality monitoring in industrial sites
* Combination of the tasks in different pipelines Traffic modelling for intelligent
transportation
Weather-based prediction of s o
renewable energy production =g m m\w R
muc i o i
& [m@ g . B
] o B -

3 EVEREST @ cFDevOps 2021 —~1EVEREST

EVEREST cloudFPGA: Key Features

Network-attached solution composed of:

* Interface logic already designed (cF Shell) to support system integration
* TPC/UDP communication is managed transparently to the user logic

e User logic (ROLE) that can be easily designed and customized) with traditional HLS tools

| cloudFPGA #l
1 1 1 ProcessB | CIOUdFPGAL L wevsusssnnssnnssy,
Application code running on host — —_ < g
* Low-level libraries for host-FPGA 58 (WS et
] N O O et @ ': __ B Accelerator 3
communication [Python | s -§§ A Master
[oee]| Cona |- N [
Possibility to use a cluster of FPGAs |L WW‘-“%“"" i SN
* IDE for allocation and management i : e
Of resources SoftwmareonHost | | *tesssssssssssssast o [

Integrated Develoment Environment (IDE) for cloudFPGAJ/cFDK w! unified interface

4 EVEREST @ cFDevOps 2021 rﬁVE REST

Climbing EVEREST: Obstacles on the Road

Programmability: Application developers have often limited hardware
skills and limited knowledge of the target platform
* How to specify the application functionality to get the best results?

* How to design the hardware accelerator and the memory o
subsystem not only to optimize the performance but also to
avoid bottleneck

Portability: Designing a FPGA system is hard, but
designing an application for many systems is
even harder

* How to specify a platform-agnostic functionality?

* How to match such functionality with the actual
hardware?

* How to deal with dynamic changes?

5 EVEREST @ cFDevOps 2021 —~1EVEREST

EVEREST SDK: System Development Kit

Coordinated design environment composed of four major phases:
Application specification (data = application and requirements)
Architecture abstraction (target system = arch. description)
Programming environment (app+arch+reqgs desc. = hw/sw bin.)
Execution monitoring and management (hw/sw bin. = execution)

1.

2.
3.
a4

~

o

-—X

EVEREST
Application Development
H iperLoom
7w ¥ Tensor
Standard SprK PPPPPPPPPPPPPPP
Big Data libraries _______ decisionmaking

O“Oz.
O_’O o ,Sbfllr mftv'\: krt

Exten

& ata p
EVEREST DSL S eeeeee y extensions
W/SW partitioning di

~

Caffe |:

erns
itioning dlrectivy

Functionality description

V

Language and DSL Frontend

~

EVEREST

Programming Environment

Compilation
rrrrrrrrr

~

J L

GreL
"

Standard OpenMP

0

Virtualized Runtime
Environment

~

_

Architecture abstraction

execution u

~

Emerging communication standards

EVEREST \
Target System
EEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEE (dsagargaied FPGA -
| €rrrrrnnnnrrnnnnnnnnnnnnnnnnansd [rro. |
. jery < > A
- e \ A -
A | | A
: (s ;
. EVEREST node v
v & \
| [FPGA| FPGA| |
—] | < > | —I
L - e -
EVEREST Edge node EVEREST Edge node
(disaggregated FPG, (disaggregat ted FPGA —
||||||||||||| C(IBM CloudFPGA)
OpenCAPI
k t tandard /

+ Traditional TCP/IP connec tions

6

EVEREST @ cFDevOps 2021

-~ EVEREST

EVEREST Programming Environment

1. Compilation Environment: analyzes

application and creates all "variants”
based on architecture abstraction and

Use case description, e.g., Short-time
prediction in traffic simulations

@

[
Bayesian
inference

- “..:],;.,..“_._'__ A Traffic
A freenenl

-@-@
Application high-level :
/. 1dataflow

Reinfo Simulation
.[} leaming e e

Kernel DSL-spec, e.g., using
C++ syntax from [RINK19]
A®B@C
uto A = Matrix(m, n),
B = Matrix(m, n),
C = Matrix(m, n);
auto u = Tensor<3>
(n, n, n);
auto v = (A*B*C) (u);

ML-Kernel

application/data requirements

* Unified IR framework (MLIR)

* Hardware acceleration and High-level
synthesis (Bambu, Vivado/Vitis HLS)

* Integration of non-functional properties
with domain-specific extensions

Standard IR format and
exchange files

Novel domain-specific
extensions (format)

System and resource description (format)

Implemented with high-level
abstractions, e.g., in MLIR

HW-optimization

Unified IR
framework

Middle- Hwinfo J
C-code

)]
'

Implementation (SYCL, C, HDL,
meta-data, EVEREST APIs)

Meta-data/Info: HW
interfaces, variants info

Backend

Multi-variant and optimized IR with
SW/HW components (memory managers)

Standard
compilers
!

EVEREST Runtime Environment

Possibility of using different
(ML) frameworks

7

Interoperability with
different HLS tools

EVEREST @ cFDevOps 2021

-~ EVEREST

Hardware Compilation Flow

Automated DSL-to-bitstream generation for accelerating selected
application kernels with specialized memory architectures

DSL

1 var input S [

2 var input D I s P i I
3 var input u R 1 P o s s
4 var output v : [11 11 11]
5 var t R 1 1 L e
6 var r S o O 1 1 |
7t =S #S# S #u. [[1 6]
g8 r =D t
ov=S#S# S #t . [[06]

(3 71 [5 8]]

(2 71 [4 8]]

Platform-agnostic Code

.| Annotated C code

Q Src-to-Src (MLIR)
| Compiler+DSE

Mnemosyne: https://github.com/chrpilat/mnemosyne

Bambu: https://github.com/ferrandi/PandA-bambu

' vemorr) | / LLUM IR / MLIR
[IP requirements] access patterns

* Security/data

requirements S ity/dat
ecurity/data
Arch. Info Mem. Info l requirements I

Mem. Gen. HLS
(Mnemosyne) (Vitis/Bambu)

IP config.

System Integration
(Olympus)

Synthesis Tools

8 EVEREST @ cFDevOps 2021

-~ EVEREST

From DSL to Bitstream

1 var input S 159 b1 B bt |

2 var input D 0 O s o |
3 var input u (14 21 14]
4 var output v : [11 11 11]
5 war t g J1L 11 11}
6 var r 11 11 311])
7t =S # S # S #u. [[1 6]
s r=Dx* t

ov=3S#S# S #t . [[06]

[3 7]

[2 7]

void kernel body(double S§[11] [11], double D[11] [11] [11], double u[11] [11] [11],

double v[11] [11] [11],
double t[11][11] [11], double r[11] [11] [11], double t1[11] [11][11],
double t3[11][11][11], double t0[11] [11][11], double t2[11] [11] [11])

kernel_body kernel body kernel_body
CEO = A0 = Q0 =... E;—‘
PLM PLM

Write port

C. Pilato, et al. "System-Level Optimization of
Accelerator Local Memory for Heterogeneous
Systems-on-Chip" TCAD'17

oy Kernel Replication for Parallel Execution Read port
[4 8]] \
C code Accelerator
Parameters for kernel Computational Parts
i, N\
* —_ Vivado
/P = o HLS -» |HDL \
=] [CFDlang — System Vivado
— Compiler \ ol — / Generator XST
CFDlang =|» "‘::r:“ —» [HoL cFDK
Mnemosyne T Memory
 Configuration, Subsystem
Array definition and . :
memory access pattern Memory
IP Library

00102

» 01011

11012

FPGA
Bitstream

9 EVEREST @ cFDevOps 2021

-~ EVEREST

Creation of Parallel Architectures

System Integration Logic

B
L 8 Bram | | kernel body,
Ctrl Bram
<)
Host |4€=P| axT D Bram Ctrl
 — .o ‘
Ctrl
u Bram
Ctrl
PLM, ., kernel_bodyy .,
v Bram
] ctrl
Bram PLM, [€=—> ACGC,
Ctrl
= l 1 -
> ctrl A[MSBs] P 1 [— ACC,
LM, -1

10 EVEREST @ cFDevOps 2021 rﬁVE R EST

Preliminary Evaluation

* Xilinx Zynq UltraScale+ MPSoC ZCU106 board

 CFD simulation of 50,000 elements

* Preliminary comparison with
embedded ARM

| | |

-
s U [0 Accelerator 2l |
00 Total 12.58
10 —
7.91 ~ 09
B 3.97 3.78 —
1.00 1.00 2.00 1.96
0 | | | | |

1 2 4 8 16

|
0o No Sharing 4;6
100 U A No Sharing (Theory) é -
0o Sharing Max é 28
— s ader TR ¢_ -
i 144 ||
124 - é
31 18 62 36 H H é
o L1 = |_| | [1 ‘ |_| | % |
1 2 4 8 16
m, k LUT FF DSP
1 11,318 (4.9%) 9523 (2.1%) 15 (0.9%)
No 2 15,929 (6.9%) 12,583 (2.7%) 30 (1.7%)
Sharing 4 25,728 (11.2%) 18,663 (4.1%) 60 (3.5%)
8 42,679 (18.5%) 30,795 (6.7%) 120 (6.9%)
1 11,292 (4.9%) 9,533 (2.1%) 15 (0.9%)
2 15,572 (6.8%) 12,596 (2.7%) 30 (1.7%)
Sharing 4 24,480 (10.6%) 18,663 (4.1%) 60 (3.5%)
8 42,141 (18.3%) 30,782 (6.7%) 120 (6.9%)
16 77,235 (33.5%) 55,053 (12.0%) 240 (13.9%)

K. Friebel, et al. "From Domain-Specific Languages to Memory-

Optimized Accelerators for Fluid Dynamics" HPCFPGA'21

11 EVEREST @ cFDevOps 2021

-~ EVEREST

Next Step: Let’s Put Memory First

We are building a compilation flow based on MLIR
LLVM MLIR for automatic specialization:
p L > Data Org > Layout >Communicati>P %.:?al. > HLS >
 MLIR Input — From DSL descriptions of the system arionins _l
functionality \ HDL
- Data Organization — Determine which data resides / T Lg/ Dt e Mm \
off chip (also based on user/compiler annotations) ey e e il
- Layout — Reorganize communication to exploit local Cache PLM PLM
memories (cache/PLM) |
- Communication — Configure prefetcher to hide Etertal Mernory DMA f— <basedh€§:%i§i
transfer latency DRAL pren
* Local Partitioning — Determine multi-bank PLM Drefetchor k| k& ;
architecture (Mnemosyne')
« HLS - Generate computation part (interfacing with N e Accelerator
existing HLS tools, e.g., open-source Vitis HLS Controller ||
frontend) : Remote [\‘ ’
 HDL Output — Automated code generation and
system-level integration based on the target platform Logic to Resolve Addr

and Reduce Delay
S. Soldavini and C. Pilato. "Compiler Infrastructure for Specializing
Domain-Specific Memory Templates" LATTE’'21

12 EVEREST @ cFDevOps 2021 —~1EVEREST

EVEREST Runtime Environment

2. Runtime Environment: implements mp— . — | Guest
the selection of "variants” and the (to submit workloads) et
hardware configuration based ¢ e
on the system status Multbnode server vteaizston Extonsions

* Dynamic adaptation and autotuning ¢) —F _ oot |
(MARGOt) m Edge/cloud ’ uIti-NI:;)Zt rur;g;romg?g KVM

* Two-level runtime for (1) virtualization of nodes 1
hardware resources regardless their distribution - "°\\. FPGA wEm
and the low-level details of the platforms; (2) implement e T
functional decisions (MARGOt, HyperLoom) \ - % —

How to collect system status and Autotuning API
expose it to the runtime?

Hiding communication latency Sea“:Lzszyi’ézcl;‘-'::'g:fg:?:t;;a;ylng

Runtime API (e.g., prefetching) (resources, nodes, data, etc.)

13 EVEREST @ cFDevOps 2021 //ﬂ\.\\EVE REST

EVEREST Runtime Virtualization

The EVEREST runtime virtualization is based on specific host and

guest extensions:

* Host
* The hypervisor of reference is KVM, and the

Virtualized Infrastructure Manager is OpenStack
« Libvirt will be extended to recognize harwdare
accelerators and allocate them to the VMs. It will be

used as driver for OpenStack Nova

 Guests
 Will be extended with multi-node and

Guest monitoring and
profiling

Multi-Node
Worker

Guest Virtualization Extensions

Guest/Host interfacell E Guest

monitoring/profiling applications that communicate Multi-Node Host Monitoring and
Wlth the hOSt Launcher profiling
« Guests will benefit from optimized communication
. KVM
mechanisms based on shared memory —
- EVEREST

14 EVEREST @ cFDevOps 2021

EVEREST Runtime Virtualization

The EVEREST runtime key virtualization techniques will be FPGA

Virtualization and API remoting:

FPGA Virtualization: we consider both network-based and host-attached

approaches
* Network based: using cloudFPGA mentioned before

* Host attached: SR-IOV and mediated pass-through v VM2

VM 3

used to allow guests direct access to the FPGA
partitions

* Single Root Input-Output Virtualization (SR-IOV)
enables the creation of multiple virtual functions

Virtual |
Function
#2

Virtual
Function
#3

« Each of them will be mapped to a VM (and a
portion of the FPGA) ‘

FPGA with SR-IOV

15 EVEREST @ cFDevOps 2021 —~1EVEREST

EVEREST Runtime Virtualization (ii)

The EVEREST runtime key virtualization techniques will be FPGA
Virtualization and API remoting:

APl remoting
* Virtualization at a library level will be implemented through
APl remoting o
* API calls in the guests will be redirected to the host Application Application

APl Remoting AP| Remoting
: M,,,,‘ ’ frontend

* A zero-copy shared memory mechanism is in place between Rk
the host and guests OSes

APl Remoting Backend

Programming API

16 EVEREST @ cFDevOps 2021 rﬁVE R EST

EVEREST Runtime Virtualization at the edge

The EVEREST runtime key virtualization focuses on both edge and cloud

sides:

 Arm, RISC-V, and x86 supported for the cloud side

« Specific virtualization solutions based on system resource partitioning are
developed to cope with security and safety requirements of edge systems

* VOSySmonitor and VOSySmonitoRV by Virtual Open Systems are based
respectively on Arm TrustZone and RISC-V PMP zones

User

(U-Mode) App App

Supervisor Non Critical Critical Critical

(S-Mode) Operating System Operating System Operating System

Machine

viooe) | oSS enieRv
| RISC-V Platform |

17 EVEREST @ cFDevOps 2021 ' EVEREST

EVEREST Runtime functional decision

The EVEREST FPGA systems include a monitoring and decision
infrastructure for dynamic autotuning based on workload conditions

Application &8 w2

Knob Knob
1iN'
K

mMARGOt MARGOt B mMARGOt

HW 1

« Application variants (either software or hardware) are generated at design time
(compilation and hardware synthesis), and selected at run time based on the actual
available hardware resources

18 EVEREST @ cFDevOps 2021 /%VE REST

Conclusions

EVEREST is a new H2020 project that aims at simplyfing the use of FPGA for the
acceleration of Big Data applications

* Data-centric approach focusing on domain-specific extensions, high-level
synthesis, and dynamic adaptivity

* Three application use cases: weather-based renewable energy prediction, air-
quality monitoring of industrial sites, and intelligent traffic management

* CloudFPGA will be used as primary target
* Looking for interoperability with existing solutions
* EVEREST SDK will be released as open-source to the community

The main goal is to simplify the description of complex
Big Data applications and improve the
programmability of distributed FPGA-based systems

19 EVEREST @ cFDevOps 2021 —~1EVEREST

POLITECNICO
MILANO 1863

1Y) 2 =

This project has received funding from the European
Union’s Horizon 2020 research and innovation
programme under grant agreement No 957269

